A normalised kurtosis-based algorithm for blind source extraction from noisy measurements
نویسندگان
چکیده
In blind extraction of independent sources, the normalised Kurtosis is a normally used cost function for the cases without the initial prewhitening. The applications of this method are, however, limited to noise-free mixtures, which is not realistic. We therefore address this issue and propose a new cost function based on the normalised Kurtosis, which makes this class of algorithms suitable for noisy environments, a typical situation in practice. The proposed method is justified by a theoretical analysis and the performance of the derived algorithm is demonstrated by simulations. r 2005 Elsevier B.V. All rights reserved.
منابع مشابه
Blind Signal Separation Using an Extended Infomax Algorithm
The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...
متن کاملBlind Signal Separation Using an Extended Infomax Algorithm
The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...
متن کاملA process monitoring method based on noisy independent component analysis
Independent component analysis (ICA) is an effective feature extraction tool for process monitoring. However, the conventional ICA-based process monitoring methods usually adopt noise-free ICA models and thus may perform unsatisfactorily under the adverse effects of the measurement noise. In this paper, a process monitoring method using a new noisy independent component analysis, referred to as...
متن کاملBlind partial separation of underdetermined convolutive mixtures of complex sources based on differential normalized kurtosis
This paper concerns the blind separation of P complex convolutive mixtures of N statistically independent complex sources, with underdetermined or noisy mixtures i.e. P < N . Our approach exploits the assumed distinct statistical properties of the sources: P sources are non-stationary, while the others are stationary. Our method achieves the ”partial separation” of the P non-stationary sources....
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing
دوره 86 شماره
صفحات -
تاریخ انتشار 2006